NAME: \qquad LRN:
CLASS TIME: \qquad Date Submitted: \qquad

GPhys 122 Online Quiz \# 1

March 17, 2020 9:00AM
For those students who can submit online on or before the extended deadline @ 5:00AM March 18, 2020, choose only ONE OUT OF FOUR problems (if you answered all, it's OK, and I'll choose only one of your correct answer). Beyond 5:00AM or until resume of classes, SOLVE ALL. Your score are based on your answers. The lowest score can be obtain is 3pts out of 20pts. Note: HAND WRITTEN AND STEP-BY STEP SOLUTIONS and send to email: mfsacedon@gmail.com.

Problem 1: In Figure below, $C_{1}=8 \mu F, C_{2}=4 \mu F, C_{3}=4.4 \mu F, C_{4}=5 \mu F$, and $C_{5}=$ $9 \mu F$. The applied potential is $V_{a b}=220 \mathrm{~V}$. (a) What is the equivalent capacitance of the network between points a and b ? (b) Calculate the charge on each capacitor and the potential difference across each capacitor.

Problem 2: For the system of capacitors shown in Figure right, a potential difference of 25 V is maintained across $a b$. (a) What is the equivalent capacitance of this system between a and b ? (b) How much charge is stored by this system? (c) How much charge does the $6.5-\mathrm{nF}$ capacitor store? (d) What is the potential difference across the $7.5-\mathrm{nF}$ capacitor?

Problem 3: In Figure, each capacitor has $\mathrm{C}=4.00 \mu F$ and $\mathrm{V}_{\mathrm{ab}}=$ +28.0 V. Calculate (a) the charge on each capacitor; (b) the potential difference across each capacitor; (c) the potential difference between points a and d.

[^0]Problem 4: A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has radius 15.5 cm , and the outer sphere has radius 15.8 cm . A potential difference of 220 V is applied to the capacitor. (a) What is the energy density at $\mathrm{r}=13.6 \mathrm{~cm}$, just outside the inner sphere? (b) What is the energy density at $\mathrm{r}=$ 15.7 cm , just inside the outer sphere? (c) For a parallel-plate capacitor the energy density is uniform in the region between the plates, except near the edges of the plates. Is this also true for a spherical capacitor?

Show your step-by step solutions.
Deadline of Submission: March 18, 2020 5:00AM
Note: HAND WRITTEN SOLUTIONS
Picture your solutions then send to email: mfsacedon@gmail.com

[^0]: Vision: A globally competitive university for science, technology, and environmental conservation
 Mission: Development of a highly competitive human resource, cutting-edge scientific knowledge and innovative technologies for

