

Phys 31

Mechanics, Electricity & Magnetism

Vector Analysis

Prof. MARLON FLORES SACEDON

Department of Mathematics & Physics

Marlon F. Sacedor

Physical Quantity

Scalar are added by ordinary algebraic method - specified by their magnitude only

Vector are added by geometric method

 specified by their magnitude and direction

Methods of finding Vector sum or resultant of forces

Graphical Method

Material needed:

□ Triangular scale or ruler

Protractor

□ Writing paper and pencil

- Cosine law Method

Component Method

Polygon Method

Parallelogram Method

Analytical Method

Material needed:

calculator

□ Writing paper and pen

Graphical Method Polygon Method

Problem

Find the magnitude and direction of resultant using polygon method and component method.

AUG 2018

VECTOR ANALYSIS

 Analytical Method Component Method Vector can be resolve in x & y components

Steps in Component Method

Step 2: Sum up all components along x-axis Step 1: Resolve the vectors into each components and all components along y-axis algebraically. and solve their values using $A_x = A\cos\theta$ & From the Figure (left) we have, $F_{ix} = F_i cos \theta$ $A_{\nu} = Asin\theta$. $R_x = -F_{1x} + F_{2x} + \dots$ $R_y = F_{1y} + F_{2y} + \dots$ $F_{iy} = F_i sin\theta$ $+F_{1y}$ $\overrightarrow{F_2}$ $\overline{F_1}$ Components of θ Step 3: Calculate the magnitude and direction Resultant (R)of the resultant using R_x and R_y . along x & y axis $R = \sqrt{(R_x)^2 + (R_y)^2}$ Magnitude of resultant $\gamma = Tan^{-1} \left(\frac{R_y}{R_x} \right) \quad \text{direction of resultant}$ Two forces or more Drawn not to scale

Steps in Component Method

Step 1: Resolve the vectors into each components and solve their values using $A_x = A\cos\theta \& A_y = A\sin\theta$.

Step 2: Sum up all components along x-axis and all components along y-axis algebraically.

From the Figure (left) we have,

$$R_x = -F_{1x} + F_{2x} + \dots$$

$$R_y = F_{1y} + F_{2y} + \dots$$

$$F_{iy} = F_i sin\theta$$

Step 3: Calculate the magnitude and direction of the resultant using R_x and R_y .

$$R = \sqrt{(R_x)^2 + (R_y)^2}$$
Magnitude of resultant

$$\gamma = Tan^{-1} \left(\frac{R_y}{R_x}\right)$$
direction of resultant

Problem

Find the magnitude and direction of resultant using polygon method and component method.

Application Problem

A cross-country skier skis 5.00 km in the direction 50° south of east, then 3.00 km in the direction N 60° E, and finally 8.00 km with bearing angle of 338° . Find the displacement of the skier.

Solving for the x component of displacement, D_x $D_x = +5\cos 50^o + 3\cos 30^o - 8\cos 68^o = 2.82 \ km$

Solving for the y component of displacement, D_y $D_y = -5 \sin 50^o + 3 \sin 30^o + 8 \sin 68^o = 5.09 \, km$

Solving for the magnitude and direction of displacement

$$D = \sqrt{2.82^2 + 5.09^2} = 5.82 \ km$$

$$\gamma = Tan^{-1} \frac{5.09}{2.82} = 61^{\circ}$$
 North of East

Department of Mathematics and Physics College of Arts & Sciences Visayas State University Laboratory Activity in General Physics 1

Class time: _____ Date Performed:

Score: 10

Stu. No.:_____ Group No.:_____

School Year:_____ Date Submitted:

VECTOR ANALYSIS

Lab Activity No. 2

Objectives:

Name:

The Exercise has the following Objectives:

1. To determine the resultant of several forces using experimental, graphical and analytical methods

2. To compare the various methods in determining the resultant vector

Materials:

Force table, Weight holders, Digital balance, Slotted masses, Spring balance, string, Pulley, Ruler, & Protractor

Procedure

- Prepare the masses assigned to your group. Weigh them using a digital balance and note your measurement.
- 2. Anchor the center of the ring to the center of the platform.
- 3. Attach the pulleys (bobbins) at specific angular directions
- Attach assigned weigh hangers/ masses (Refer to table 1 and 2) to the strings tied to the center ring
 of the force table. The string should pass through the pulleys (bobbins)
- 5. Hooked the spring balance to the free end of the third/ fourth string
- Pull the spring balance to position the ring at the center. Take the reading and direction of the spring balance or force sensor as your equilibrant
- 7. Determine the resultant for two forces and three forces using the value of the equilibrant
- Determine and record the resultant using graphical method. Use parallelogram method for two vectors and polygon method for three vectors
- 9. Determine and record the resultant using the component method.

Table 1. Adding Two Vectors

Assigned mass	Actual	Equilibrant	Resultant	Resultant	Resultant
	mass	(Force Table)	(Force Table)	(Graphical)	(Component Method)
500g, 30 ° N of E					
1000g, 85 ° S of E					

Table 2. Adding three Vectors

Assigned mass	Actual mass	Equilibrant (Force Table)	Resultant (Force Table)	Resultant (Graphical)	Resultant (Component Method)
500g, 15 ° N of E					·
1000g, 70 ° S of W]			
300g, 20 ° E of S					

Table 3: % Difference/ Error Measurement

	% diff (experimental and	erence graphical method}	% error (Experimental and analytical method)		
	Magnitude	Direction	Magnitude	Direction	
Adding 2 vectors					
Adding 3 Vectors					

Generalization:

1. Compare the different methods in determining the resultant.

2. What is the difference between equilibrant and resultant?

3. Why is it usually difficult to push a sled than to pull it?

Conclusion:

Problems:

1. A car moved 50 km to the North. What is its displacement?

 Three football players participating simultaneously in a tackle exert the following forces on the ball carrier. 80 g N, 100 g 20° N of E 120 g 35° W of N. What are the magnitude and direction of a single force that would be needed to keep the point at cast.

